If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19t+5t^2=0
a = 5; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·5·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*5}=\frac{-38}{10} =-3+4/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*5}=\frac{0}{10} =0 $
| 5y+12=9y-2 | | -1=k+7/9 | | -48-x=39 | | -m3/2+9=0 | | 100-6=0.5x | | 3/4(8x-4)=7+2 | | 6+m-m=-2 | | 5(3x-2)=4(2x1) | | -5/6z-3=47 | | 20/3x-5=5/x-2 | | 8(y-1)=3y=6(2y-6) | | 15=-11y | | 30)-7(5-7k)=161 | | 8n−4=6n+6 | | 7=-5/6z=23 | | Y+9+4y=180 | | 5x-11+6x-7=180 | | 12=n3 | | 2x^{3}-18x^{2}+22x+42=0 | | 4+3y=18-5y+7y+2 | | 1n=8n-3 | | 2x−18=5 | | 1,6-x=32 | | 3x+8+6x+19=180 | | 3x+134+5x+6=148 | | 76=10x=44 | | -12=-15k | | 5/8y=5/12 | | -9=3-3(x+3) | | -8(2-4a)=-12(12-2a)-8 | | -9=3-3(x+3 | | 0.55v=35 |